140 research outputs found

    Local Popularity: A Double-edged Tool in Platform Operation

    Get PDF
    Although displaying local popularity is wildly adopted by major platforms, the actual effect of such information cues on motivating users has not been documented. Findings from a field experiment suggest that local popularity effectively motivates users to invite more friends but surprisingly reduces usersā€™ self-participation. Social conformity theory may account for such effects: local information encourages users to invite their local friends, but such effect is limited to users from small cities since users in a relatively small community are more bonded and less likely to reject the invitation due to social pressure. Meanwhile, local information attenuates the power of popularity (e.g., fewer registered users in the local area) and ultimately discourages users\u27 self-participation. This study deepens our understanding of displaying popularity cue in improving platform operation, based on which we suggest that practitioners should be cautious about the persuasive power of such information cues in location-based marketing

    Customer Acceptance of Biometric Technology

    Get PDF
    Information intensive industries, such as the hospitality industry, are attempting to turn back the customer service clock by creating more personalized experiences for their guests. Customer Relationship Management (CRM) systems have enabled organizations to record and gain insight into the relationship it has with each one of its clients. The act of face and name recognition continues to remain an essential ingredient in creating positive customer service experiences. A biometric recognition system could assist hotel employees by providing an on-demand history of customersā€™ behaviors and preferences. A prototype was developed to simulate a hotel facial recognition system with a fingerprint identification application. The experiment also included a survey instrument to measure the likelihood of customer acceptance of biometric technology. This study concluded that user intention to adopt depended on the attractiveness of the innovation and new product attributes

    Requirements for and Challenges in Developing Improved Creep Ductility-based Constitutive Models for Tempered Martensitic CSEF Steels

    Get PDF
    Creep fracture behaviour of tempered martensitic steels is generally governed by the process of cavity nucleation, growth and coalescence into microcracks. Therefore, creep ductility, which can be treated as material resistance to damage, has a critically important implication on the creep performance of materials and components, particularly where mechanical and metallurgical constraints are present. This review deals with some key aspects relating to creep ductility of high-temperature materials, paying a specific attention to creep strength enhanced ferritic (CSEF) steels. In the present work, the currently available state-of-the-art creep ductility-based constitutive models are reviewed, and the predictive capabilities of these models, particularly under multi-axial stress states, are examined. On this basis, the main limitations and challenges associated with using the existing models are evaluated and identified, and the requirements for developing improved creep ductility-based models for CSEF steels in order to carry out more accurate service life assessments are addressed

    Plasma-Derived Extracellular Vesicle Phosphoproteomics through Chemical Affinity Purification

    Get PDF
    The invasive nature and the pain caused to patients inhibit the routine use of tissue biopsy-based procedures for cancer diagnosis and surveillance. The analysis of extracellular vesicles (EVs) from biofluids has recently gained significant traction in the liquid biopsy field. EVs offer an essential ā€œsnapshotā€ of their precursor cells in real time and contain an information-rich collection of nucleic acids, proteins, lipids, and so on. The analysis of protein phosphorylation, as a direct marker of cellular signaling and disease progression could be an important stepping stone to successful liquid biopsy applications. Here we introduce a rapid EV isolation method based on chemical affinity called EVtrap (extracellular vesicle total recovery and purification) for the EV phosphoproteomics analysis of human plasma. By incorporating EVtrap with high-performance mass spectrometry (MS), we were able to identify over 16ā€Æ000 unique peptides representing 2238 unique EV proteins from just 5 Ī¼L of plasma sample, including most known EV markers, with substantially higher recovery levels compared with ultracentrifugation. Most importantly, more than 5500 unique phosphopeptides representing almost 1600 phosphoproteins in EVs were identified using only 1 mL of plasma. Finally, we carried out a quantitative EV phosphoproteomics analysis of plasma samples from patients diagnosed with chronic kidney disease or kidney cancer, identifying dozens of phosphoproteins capable of distinguishing disease states from healthy controls. The study demonstrates the potential feasibility of our robust analytical pipeline for cancer signaling monitoring by tracking plasma EV phosphorylation

    Multiple mesodermal lineage differentiation of Apodemus sylvaticus embryonic stem cells in vitro

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Embryonic stem (ES) cells have attracted significant attention from researchers around the world because of their ability to undergo indefinite self-renewal and produce derivatives from the three cell lineages, which has enormous value in research and clinical applications. Until now, many ES cell lines of different mammals have been established and studied. In addition, recently, AS-ES1 cells derived from <it>Apodemus sylvaticus </it>were established and identified by our laboratory as a new mammalian ES cell line. Hence further research, in the application of AS-ES1 cells, is warranted.</p> <p>Results</p> <p>Herein we report the generation of multiple mesodermal AS-ES1 lineages via embryoid body (EB) formation by the hanging drop method and the addition of particular reagents and factors for induction at the stage of EB attachment. The AS-ES1 cells generated separately in vitro included: adipocytes, osteoblasts, chondrocytes and cardiomyocytes. Histochemical staining, immunofluorescent staining and RT-PCR were carried out to confirm the formation of multiple mesodermal lineage cells.</p> <p>Conclusions</p> <p>The appropriate reagents and culture milieu used in mesodermal differentiation of mouse ES cells also guide the differentiation of in vitro AS-ES1 cells into distinct mesoderm-derived cells. This study provides a better understanding of the characteristics of AS-ES1 cells, a new species ES cell line and promotes the use of Apodemus ES cells as a complement to mouse ES cells in future studies.</p

    The EXO70 inhibitor Endosidin2 alters plasma membrane protein composition in Arabidopsis roots

    Get PDF
    To sustain normal growth and allow rapid responses to environmental cues, plants alter the plasma membrane protein composition under different conditions presumably by regulation of delivery, stability, and internalization. Exocytosis is a conserved cellular process that delivers proteins and lipids to the plasma membrane or extracellular space in eukaryotes. The octameric exocyst complex contributes to exocytosis by tethering secretory vesicles to the correct site for membrane fusion; however, whether the exocyst complex acts universally for all secretory vesicle cargo or just for specialized subsets used during polarized growth and trafficking is currently unknown. In addition to its role in exocytosis, the exocyst complex is also known to participate in membrane recycling and autophagy. Using a previously identified small molecule inhibitor of the plant exocyst complex subunit EXO70A1, Endosidin2 (ES2), combined with a plasma membrane enrichment method and quantitative proteomic analysis, we examined the composition of plasma membrane proteins in the root of Arabidopsis seedlings, after inhibition of the ES2-targetted exocyst complex, and verified our findings by live imaging of GFP-tagged plasma membrane proteins in root epidermal cells. The abundance of 145 plasma membrane proteins was significantly reduced following short-term ES2 treatments and these likely represent candidate cargo proteins of exocyst-mediated trafficking. Gene Ontology analysis showed that these proteins play diverse functions in cell growth, cell wall biosynthesis, hormone signaling, stress response, membrane transport, and nutrient uptake. Additionally, we quantified the effect of ES2 on the spatial distribution of EXO70A1 with live-cell imaging. Our results indicate that the plant exocyst complex mediates constitutive dynamic transport of subsets of plasma membrane proteins during normal root growth

    Cross-National Differences in Victimization : Disentangling the Impact of Composition and Context

    Get PDF
    Varying rates of criminal victimization across countries are assumed to be the outcome of countrylevel structural constraints that determine the supply ofmotivated oĀ”enders, as well as the differential composition within countries of suitable targets and capable guardianship. However, previous empirical tests of these ā€˜compositionalā€™ and ā€˜contextualā€™ explanations of cross-national diĀ”erences have been performed upon macro-level crime data due to the unavailability of comparable individual-level data across countries. This limitation has had two important consequences for cross-national crime research. First, micro-/meso-level mechanisms underlying cross-national differences cannot be truly inferred from macro-level data. Secondly, the eĀ”ects of contextual measures (e.g. income inequality) on crime are uncontrolled for compositional heterogeneity. In this paper, these limitations are overcome by analysing individual-level victimization data across 18 countries from the International CrimeVictims Survey. Results from multi-level analyses on theft and violent victimization indicate that the national level of income inequality is positively related to risk, independent of compositional (i.e. micro- and meso-level) diĀ”erences. Furthermore, crossnational variation in victimization rates is not only shaped by diĀ”erences in national context, but also by varying composition. More speciĀ¢cally, countries had higher crime rates the more they consisted of urban residents and regions with lowaverage social cohesion.

    EZH2 modifies sunitinib resistance in renal cell carcinoma by kinome reprogramming

    Get PDF
    Acquired and intrinsic resistance to receptor tyrosine kinase inhibitors (RTKi) represent a major hurdle in improving the management of clear cell renal cell carcinoma (ccRCC). Recent reports suggest that drug resistance is driven by tumor adaptation via epigenetic mechanisms that activate alternative survival pathways. The histone methyl transferase EZH2 is frequently altered in many cancers including ccRCC. To evaluate its role in ccRCC resistance to RTKi, we established and characterized a spontaneously metastatic, patient-derived xenograft (PDX) model that is intrinsically resistant to the RTKI sunitinib but not to the VEGF therapeutic antibody bevacizumab. Sunitinib maintained its anti-angiogenic and anti-metastatic activity but lost its direct anti-tumor effects due to kinome reprogramming, which resulted in suppression of pro- apoptotic and cell cycle regulatory target genes. Modulating EZH2 expression or activity suppressed phosphorylation of certain RTK, restoring the anti-tumor effects of sunitnib in models of acquired or intrinsically resistant ccRCC. Overall, our results highlight EZH2 as a rational target for therapeutic intervention in sunitinib-resistant ccRCC as well as a predictive marker for RTKi response in this disease.This research was funded by Roswell Park Cancer Instituteā€™s Cancer Center Support Grant from National Cancer Institute, NIH P30CA016056 (RP) and a generous donation by Richard and Deidre Turner (RP). This investigation was conducted in-part in a facility constructed with support from Research Facilities Improvement Program Grant Number C06 RR020128-01 from the National Center for Research Resources, National Institutes of Health
    • ā€¦
    corecore